Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Biol ; 56(3): 469-473, 2022.
Article in English | MEDLINE | ID: covidwho-1883269

ABSTRACT

The development of specific drugs against SARS-CoV-2 infection is a major challenge facing global science and healthcare. Despite numerous attempts, there are still no truly effective drugs. Currently, the main approach in the creation of drugs against COVID-19 is repurposing, i.e., re-profiling existing drugs approved for medical use, for example, the use of a drug for the treatment of Ebola-Remdesivir, and the use of a drug for the treatment of influenza-Favipiravir. However, it is already obvious that these drugs are not specific enough nor effective enough. Another promising approach is the creation of new molecules, but it should be noted immediately that implementation requires much more time and costs. However, the search for new SARS-CoV-2 specific antiviral agents continues. The aim of our work was the creation of new 5-substituted uridine derivatives as potential inhibitors of coronavirus RNA-dependent RNA polymerase. The substances were obtained in high yields by the Suzuki‒Miyaura reaction and characterized using modern physicochemical methods. However, testing of their antiviral activity against SARS-CoV-2 did not reveal a significant inhibitory effect.

2.
Mol Biol (Mosk) ; 56(3): 510-515, 2022.
Article in Russian | MEDLINE | ID: covidwho-1876515

ABSTRACT

The development of specific drugs against SARS-CoV-2 infection is a major challenge facing global science and healthcare. Despite numerous attempts, there are still no truly effective drugs. Currently, the main approach in the creation of drugs against COVID-19 is repurposing, i.e., re-profiling existing drugs approved for medical use, for example, the use of a drug for the treatment of Ebola-Remdesivir, and the use of a drug for the treatment of influenza-Favipiravir. However, it is already obvious that these drugs are not specific enough nor effective enough. Another promising approach is the creation of new molecules, but it should be noted immediately that implementation requires much more time and costs. However, the search for new SARS-CoV-2 specific antiviral agents continues. The aim of our work was the creation of new 5-substituted uridine derivatives as potential inhibitors of coronavirus RNA-dependent RNA polymerase. The substances were obtained in high yields by the Suzuki-Miyaura reaction and characterized using modern physicochemical methods. However, testing of their antiviral activity against SARS-CoV-2 did not reveal a significant inhibitory effect.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2 , Uridine/pharmacology , Uridine/therapeutic use
3.
Chembiochem ; 21(10): 1412-1417, 2020 05 15.
Article in English | MEDLINE | ID: covidwho-832581

ABSTRACT

The structurally unique "fleximer" nucleosides were originally designed to investigate how flexibility in a nucleobase could potentially affect receptor-ligand recognition and function. Recently they have been shown to have low-to-sub-micromolar levels of activity against a number of viruses, including coronaviruses, filoviruses, and flaviviruses. However, the synthesis of distal fleximers in particular has thus far been quite tedious and low yielding. As a potential solution to this issue, a series of proximal fleximer bases (flex-bases) has been successfully coupled to both ribose and 2'-deoxyribose sugars by using the N-deoxyribosyltransferase II of Lactobacillus leichmannii (LlNDT) and Escherichia coli purine nucleoside phosphorylase (PNP). To explore the range of this facile approach, transglycosylation experiments on a thieno-expanded tricyclic heterocyclic base, as well as several distal and proximal flex-bases were performed to determine whether the corresponding fleximer nucleosides could be obtained in this fashion, thus potentially significantly shortening the route to these biologically significant compounds. The results of those studies are reported herein.


Subject(s)
Escherichia coli/enzymology , Lactobacillus leichmannii/enzymology , Nucleosides/biosynthesis , Pentosyltransferases/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Glycosylation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL